
Troubleshooting
OSI Layers 4−7

White Paper

In this two-part white paper series, learn to quickly locate and resolve problems across the
OSI layers using the Troubleshooting Cheat Sheet.

The root cause of application anomalies don’t stop at Layer 3 of
the Open Systems Interconnection (OSI) model. In fact, some of the
most difficult to diagnose service issues are rooted in, or manifest
themselves at the Transport Layer (Layer 4) or higher.

Since the Transport layer is responsible for building and maintaining
sessions between devices, it serves to connect the lower layers (1-3)
to the higher layers (5-7). It can also be the point of referred pain,
when the real source of the problem lies elsewhere.

A methodical process to resolving service issues that reside at Layers
4-7 can clear up ambiguities and accelerate problem resolution. Mike
Motta, NI University instructor and troubleshooting expert, and Tony
Fortunato Senior Network Performance Specialist and Instructor
with the Technology Firm, place typical user complaints into three
categories:

  Slow Network

  Inability to Access Network Resources

  Application-Specific Issue

Top 3 user complaints
• Slow network
• Inability to access network resources
• Application-specific issues

!$%!#
!$%!#

!$%!#

2 Troubleshooting OSI Layers 4−7

Complaint What to Ask What It Means

Slow Network • What type of application is being used? Is it web-based?
Is it commercial, or a homegrown application?

• Determines whether the person is accessing local or
external resources.

• How long does it take the user to copy a file from the
desktop to the mapped network drive and back?

• Verifies they can send data across the network to a server,
and allows you to evaluate the speed and response of the
DNS server.

• How long does it take to ping the server of interest? • Validates they can ping the server and obtain the
response time.

• If the time is slow for a local server, how many hops are
needed to reach the server?

• Confirms the number of hops taking place. Look at switch
and server port connections, speed to the client, and
any errors.

Inability to
Access Network
Resources

• What task is the user attempting to perform? • Indicates whether the action is limited to a specific
resource such as a mapped drive on a server or multiple
network resources.

• What type of application is the user attempting
to access?

• Similar to the above question on application type, this
may point to a problem with multiple internal servers.

Application-
Specific Issues

• What’s the 3-way handshake time? • Identifies potential points where a slowdown might
be occurring.

• What’s the server processing time? • Points to whether the server is taking too long to
process data.

• How much data are you pulling from the application and
sending across the network?

• Assesses whether the application is sending data in an
expected and efficient way.

For additional information on application-specific issues, check out Mike Motta’s Tech Tips.

Based upon the answers to the questions outlined in the following Troubleshooting Cheat Sheet, you’ll gain a better understanding of
the symptoms and be able to isolate the issue to the correct layer of the OSI model.

3 Troubleshooting OSI Layers 4−7

Continuing Up the Stack: The Second
4 Layers
With these questions answered, working through the OSI model is a
straightforward process. With the exception of Layer 1, each layer of the
OSI model relies on the next lower layer to provide services as specified.
Requests drop down and are completed, as every layer interacts with the
next layer, both above and below.

When dealing with different layers, understanding how each delivers data
and functions impacts how you will troubleshoot.

Layer Highlights and Functions

Transport Layer

  End-to-end connection and connectionless data delivery management

  Ensures reliable packet delivery caused by network congestion & errors

  Congestion avoidance and data transmission flow control

Note: The majority of the functions below for Layers 5-7 are logically
combined into the “Application Layer” for the purposes of discussion
in this paper. Some capabilities, the application connectivity of the
session layer in particular, can be thought of as residing within Layer 4.

Session Layer

  Establishes, manages, and terminates application connections

  Manages data transfer permissions and records upper layer errors

Presentation Layer

  Application, system, and network independent data formatting

  Data conversion, compression, encryption, and decryption

Application Layer

  Supports application and end-user processes

  Offers application services

  User identification, authentication, and privacy

The TCP three-way handshake is the
foundation on which the application
session is built.

Steps to Troubleshooting Success:
Transport Layer Checklist
1. Is the TCP three-way handshake successful?

The TCP three-way handshake is the foundation on which the
application session is built. “Without it, your service is DOA before it
even gets out of the gate,“ says Mike Motta.

At this point the session client-server connection is complete and
the application layer activities can begin. Occasionally, the session
request is delayed or fails as the application socket or port is too busy
to support it (or if there are lower layer network issues). In this case,
rather than responding with a SYN-ACK, the server will reply with an
RST (or simply ignore the SYN).

Below is an example of an abnormal three-way handshake. You can
see the client needs to say “Are you there?” (Transmitting a SYN) three
times before the server finally responds (with a SYN-ACK). Definitely
not a good way to start a conversation (and if seen repeatedly should
be investigated).

Assuming the three-way handshake is successful, Motta states that,
“One important piece of data you can glean is the total network
roundtrip time. It’s measured from the SYN to the ACK and is useful
for assessing the ability of the underlying network to service devices,
as it does not include any application processing overhead. Think of
it as the “best time” you can expect to attain from a responsiveness
standpoint between client and server. Given this, it can be useful
in measuring the infrastructure’s ability to support lower-latency
applications.”

4 Troubleshooting OSI Layers 4−7

Client application requests can then begin, below is an example
with HTTP:

2. Is TCP Repeating Itself Too Often?

The Pain of Excessive Retransmissions

It’s important to emphasize here that as a connection-based transport,
TCP is a highly robust protocol that can tolerate the re-sending of
packets. In fact, even the healthiest network will drop some packets.

TCP is also great at shielding the application from this activity at low
levels of packet loss, unless it becomes excessive. The potential root
causes of too many retransmissions are varied, from problems with
TCP itself (e.g. checksum or sequence number generation errors) to
degraded physical connectivity (very common, due to bad cabling or
switch port, etc…).

Retransmissions: Real or Fast?

“Retransmissions come in two varieties,” says Tony Fortunato.

 “The first I will refer to as Real. In this case the TCP timeout value
is reached before the data is received and the packet must be
retransmitted (after considerable delay) which may impact app
performance.”

“The second is a Fast retransmission. In this scenario, the receiving TCP
stack continues to resend duplicate ACKs to the sender for the last
contiguous sequenced packet number received as each new
out-of-order packet arrives. This is much better as the sender can
retransmit the packet that is assumed lost without waiting for the
timeout to occur. This usually minimizes the impact to the app and
vividly illustrates the power of TCP as it sorts out an occasional
lost packet,” says Fortunato.

Assuming neither of these are an issue, the next most frequent causes
are an overloaded link or TCP server Stack Busy condition.

The former is caused when a switch or router is simply overwhelmed
with the amount of traffic passing through it. At some point the
deluge exceeds the processing capability and packets must be
discarded. Likewise, if the application server workload exceeds the
processing capability, its TCP stack will ignore or delay a client request.
This will be viewed by the client as packets dropped or lost, and a
retransmission request will be initiated.

The solution in both cases is to reduce the load to the devices and/
or increase the switch/router or server processing performance to
support the heightened workloads.

Below is an example of multiple retransmissions for a web session:

Did You Know:

The three top communication disrup-
tors are excessive retransmissions, flow
control issues, and congestion.

1
0
0
1

0011
11

There will always be some lost packets (and hence retransmissions). As
long as these are not excessive, other frequent TCP issues are probably
related to flow and congestion control.

5 Troubleshooting OSI Layers 4−7

3. Is TCP Transmitting Too Slowly?

Incorrect Flow Control Can Throttle App Performance

Incorrect window size can have a significant impact on application
performance. Window size is the end-to-end TCP flow control
protocol utilized to ensure the sender does not transmit data faster
than the receiver can receive and process. Its value is expressed
in bytes.

The graphic below shows that the receiving device’s window size is
64,588 bytes. The window size should be large enough to adequately
deliver sufficient amounts of data to the service or application for
acceptable user performance without exceeding the receiving TCP
packet’s buffering capacity (otherwise packets will be discarded and
need to be re-transmitted).

3 ways to resolve latency

• Increase the window size

• Re-architect app deployment

• Upgrade infrastructure

Once the sender reaches the maximum amount of data advertised in
the window size, it must wait for an ACK with an updated window
size from the receiver before proceeding with more data.

 Generally, assuming a reasonable value, window sizing is not an issue
on a local network. However, higher levels of network latencies—often
associated with poor WAN performance—can starve an app.

Care and Feeding of Applications

Considering the round-trip time of the network, whenever a sender
transmits data and the window size reaches zero, it must stop and
wait for its data to:

  Traverse the network

  Reach the receiver

  Get the receiver’s ACK (with an updated window size)

As the travel time grows longer and larger via latency, applications can
be left waiting for TCP to request more data. The solution here can
vary. If possible and the application can support it, simply increase the
window size.

You can also re-architect the application host deployment so as
to reduce the latency between tiers. Of course, lowering network
latency is another way to solve the issue if your budget supports the
associated costs in higher WAN speeds and/or faster
infrastructure devices.

Closely related to window sizing are the topics of chatty apps and
application read/write buffer sizing.

6 Troubleshooting OSI Layers 4−7

4. Is TCP Experiencing Roadblocks?

– Congestion Control Can Point to the Solution
Network congestion can significantly degrade performance.
Fortunately, recent additions to the TCP standards revolve around
congestion control. As network complexity and speeds continue to
grow, the ability of TCP to effectively manage congestion
has increased.

There are four algorithms that are used simultaneously:

  Slow-start

  Congestion avoidance

  Fast retransmit

  Fast recovery.

If the previously discussed concepts fail to improve performance and
assuming you suspect the issue remains within the transport layer
please refer to RFC 5681 for additional details.

Optimize TCP Performance
Fortunato and Motta offer three frequently overlooked ways to
improve your TCP transport layer performance.

Segment Size

The optimal segment size (not counting TCP header and packet
overhead) is 1460 bytes (assuming 10/100 Ethernet). Motta calls this
out as a potential waste of network resources because sending out
lots of small packets exacerbates the connection-orientated nature of
TCP (which in MS Windows requires an ACK for every two packets
or 200ms).

“I constantly remind my clients that if their app can support it, this is
the segment size that best leverages their network assets and offers a
great way to improve service performance,” says Motta.

Windows Scaling

Since the window size control field is limited to no more than 65,535
bytes, a TCP window scale option (defined in RF 1323) can be used to
increase the maximum window size up to a gigabyte. This is a great
way to significantly increase TCP throughput.

“However, before doing this be sure to confirm your devices can
support the added required buffering, otherwise it can corrupt your
drivers,” says Fortunato. “Also, your app must be able to handle the
increased amount of possible incoming data.”

Selective Acknowledgement

The TCP protocol as initially designed can lead to inefficiencies
because of the cumulative ACK scheme. Basically this means that a
receiver is unable to say it received later data if it failed to receive
earlier bytes. Thousands of bytes may be received but if the first 1,000
bytes is missing, all the data may have to be re-sent.

RFC 2018 defines an optional selective acknowledgement (SACK),
enabling the receiver to ACK discontinuous chunks of packets that
were successfully received. The receiver communicates the beginning
and end of a contiguous range of packets that it has (via the sequence
numbers), allowing the sender to simply resend the lost packets. “I’ve
worked with many clients that have not implemented this great TCP
feature,” says Fortunato. “To me it’s a simple way to improve overall
service performance, especially since even the most robust networks
will drop packets.”

Application Layers
At this point in the debug process, you’ve hopefully eliminated any
Layers 1 - 4 issues. Due to the complexity and number of applications
in a modern data center, it is important to realize that the concepts
provided are limited to basic fundamentals.

HTTP, a protocol used for many application front-ends, and of course
web-based traffic is used for illustrative purposes of the process of
debugging an app issue.

Fast Facts:

HTTP status codes are divided into
five groups:

1XX– Informational

2XX– Success

3XX– Redirection

4XX– Client Error

5XX– Server Error

7 Troubleshooting OSI Layers 4−7

Application Read/Write Block Buffer Sizing
Block buffer sizing is an important metric that is often overlooked or
not visible to the network engineer (who frequently is not familiar
with app details).

The block buffer size is the maximum amount of data in bytes that
the app can support queued up. This information is what’s passed
to the stack for use in TCP window sizing. If the value is too low,
it will effectively throttle the overall app performance, potentially
dramatically. What looks on the surface like a slow network—and
will show up as zero window problems—is actually a pure application
layer issue.

Chatty Apps
If an application requires packet sizing that is appreciably lower
than the optimal segment size mentioned above (1460 bytes), it is
considered chatty. After multiple clients complained about degraded
performance, even after checking out their networks and finding them
fine, Motta explained the effects of the chatty applications.

“When clients re-architect their application deployments, applications
that once worked fine when hosted all in-house (with low latency)
suddenly act up when increased network latencies (associated with
WAN links) bring the application’s low payload limits to the surface,”
Motta says.

Motta recommends updating the app to support larger segments. If this
is not an option, reduce the network latency to levels that will enable
the service to run within acceptable user performance parameters.

Status Codes
Digging into application-specific issues requires the ability to perform
payload-level analysis to assess exactly how an app is responding
to users’ requests. Depending on the service, reason, error, status,
or condition, codes can be captured and translated to infer how
the application is performing. There are a number of performance
monitoring vendors that offer these capabilities.

Check out a comprehensive list to see individual values.

Here are the most common:

Status Code What It Means What to Do About It

200 Ok A successful HTTP
request, your world
would be happier if
this was the only code
you ever saw

Nothing

304 Not Modified The client already has
the information (which
has not changed,
hence the web server
does not need to
retransmit; this is also a
good response

Nothing

404 Not Found The user has requested
a URL that does not
exist

Nothing, unless you
see too many of
them to the same
URL, then it could be
someone attempting
to gain access either
innocently (e.g.
perhaps an incorrect
URL was provided
customers?) or for
nefarious reasons.
Further investigation
may be merited

500 Internal
Server Error

Something bad has
happened inside the
web server, “Houston
we have a problem”
with a system

Get in touch with
the web server team
if more than a few
of these are noted as
it could be an early
warning of
underlying problems

© 2015 Viavi Solutions Inc.
Product specifications and descriptions in this
document are subject to change without notice.
troubleshootingosilayers4−7-wp-ec-ae
30176217 901 0315

Contact Us +1 844 GO VIAVI
 (+1 844 468 4284)

To reach the Viavi office nearest you,
visit viavisolutions.com/contacts.

viavisolutions.com

Below are examples of web server responses. The first is the expected
200 OK. This means all is well.

On the other hand, as you can see in the diagram below, a 500
Internal Server Error is bad news.

As long as you primarily see 200 OKs (and of course assuming
acceptable Layers 1 - 4 health), your web-based service should be
delivering acceptable user performance. The one caveat is that you
will want to setup adequate baseline response times to ensure that
data is received in sufficient time to maintain high-levels of
customer satisfaction.

While most applications use similar type messaging to communicate
their ability to effectively service clients’ requests, the format and
meanings will be unique. The key is to work with your application
teams to understand what these various codes are, and when errors
are detected to make the specific group aware so the issue can be
quickly resolved.

Conclusion
The life of the network engineer or administrator gets more
interesting and challenging every day. As the first responder, network
staff will often play a pivotal role in fixing the problem. What that
means is they will need to have a solid understanding of all layers of
the OSI model, correcting those issues that reside within the network
and assisting the application or systems teams when possible.

Also, modern applications and the more complex hosting strategies
that distribute app tiers around the world make detailed transport
and application layer awareness ever-more important. Use the
methodologies and suggestions in this paper as a starting point to
ensure that your network resources are ready to support today’s
modern apps and solve problems when they occur.

